Lecture 12

Integcation of simple Ennctions. Let (x, μ, v) be a measuce space. We define the $S_{\text {-integ- }}$ ral of a simple tunction $f \in L:=L(X, \mu):=\{\mu$-measurable functions $X \rightarrow \mathbb{R}\}$ by

$$
\int f d \mu:=\sum_{i<n} a_{i} \cdot \mu\left(B_{i}\right)
$$

where $f=\sum_{i<n} a_{i} \mathbb{1}_{B_{i}}$ is some/as presectation.
For $B \in M$, put $\int_{B} f d \mu:=\int f \cdot \mathbb{1}_{B} d \mu$.

Prop. This is well-ditined (i.e. doesn't depend on the choice of presentation).
Proot. H(W.
Pcopertics. Le $f, g \in L:=L(X, M)$ be simple functions.
(a) Non-negativity: $f \geqslant 0 \Rightarrow \int f d \mu \geqslant 0$. Hence, $t \leq y \Rightarrow \int f d \mu \leqslant \int g d \mu$.
(b) Linearity: $\int(a f+g) d \mu=a \cdot \int f d^{\mu}+\int g d J^{\mu}$ for all $a \in \mathbb{R}$.
(c) If $f \geq 0$, then $\int f d \mu=0 \Leftrightarrow f=0$ a.e.
(d) If $f \geqslant 0$, then the map $B \mapsto \int_{B} f d \mu$ is a measune on M devorted by μ_{i}.

Proot. (a) is hy ditinition, (b) is by well-definedurn.
For (c), we ase that $0 . \infty=0$.
For (d), we only weed to show ctbl additivity, so let $B=\bigcup_{n \in \mathbb{N}} B_{n}$ in M. Fix a repasectaction $f=\sum_{i<m} a_{i} \mathbb{1}_{C_{i}}$. Then

$$
\begin{aligned}
\mu_{f}^{\mu}(B) & =\int_{B} f d \mu=\int f \cdot \mathbb{1}_{B} d \mu=\sum_{i<m} a_{i} \mu\left(c_{i} \cap B\right) \stackrel{\downarrow}{=} \sum_{i<m}^{\text {ctol } a_{i}} \sum_{n \in \mathbb{N}} \mu\left(c_{i} \cap B_{n}\right)= \\
& =\sum_{n \in \mathbb{N}} \sum_{i \leq m} a_{i} \mu^{\mu}\left(C_{i} \cap B_{n}\right)=\sum_{n \in \mathbb{N}} \int \sum_{i<m} a_{i} \mathbb{1}_{C_{i}} \cdot \mathbb{1}_{B_{n}} d \mu=\sum_{n \in \mathbb{N} B_{n}} \int_{n} d \mu \\
& =\sum_{n \in \mathbb{N}} \mu_{f}\left(B_{n}\right) .
\end{aligned}
$$

Integration of L^{+}. Let (x, M, μ) be a measure pace. We learn hor to approximate L^{+}factions tom below h_{j} simple factions.

Recall notions of convergence. For a set X and a uric space (Y, d) (tor exaygle $Y=\left(\mathbb{R}\right.$). Let $f_{n}: X \rightarrow Y$ and $f: X \rightarrow Y$.

- We say $W_{t}\left(f_{n}\right)$ wewnges to f pointwise, and verite $f_{n} \rightarrow f$ ptaise, if for each $x \in X, \quad f_{u}(x) \rightarrow f(x)$ in the top of Y.
- We say $h_{t}\left(f_{n}\right)$ converges to f uniformly, and write $f_{n} \rightarrow{ }_{n} f$, if $d_{u}\left(f_{u}, f\right) \rightarrow 0$ as $n \rightarrow \infty$, where for $f, y: X \rightarrow Y$

$$
d_{u}(f, g):=\sup _{x \in X} d(f(x), g(x))_{1}
$$

we call this the mitorm distance between f at g. When $Y=\mathbb{R}$, we also write $\|f\|_{u}:=\operatorname{iup}_{x \in x}|f(x)|$, so $d_{u}(f, y)=\|f-g\|_{u}$, and we call $\|\cdot\|_{u}$ the uniform no cm.

Prop.
(a) For even $f \in L^{+}$, there is a segacace $\left(f_{a}\right) \leq L^{+}$of simple functions sub BUt $f_{0} \leq f_{1} \leq f_{2} \leq \ldots \leq f, \quad f_{n} \rightarrow f$ poictwise on X, the convergence is uniform on every set $X^{\prime} \leq X$ on which f is bonacled.
(b) For avery $f \in l$, the is a sequence $\left(f_{a}\right) \leq L$ of simple functions sit. $\left|f_{0}\right| \leq\left|f_{1}\right| \leq \ldots \leq|f|$, $f_{n} \rightarrow f$ poirtwise, and $\left.\left.f_{u}\right|_{X^{\prime}} \rightarrow{ }_{u} f\right|_{X^{\prime}}$ for each $X^{\prime} \subseteq X$ on chich f is bounded.

Proof. (b) Gollows tron (a) bs writing $f=f^{+}-f^{-}$, getting sequences (f_{u}^{+}) and $\left(f_{u}^{-}\right)$ of simple functions satisfying (a) for $f t$ al f^{-}, then the sequence $f_{u}:=f_{u}^{+}-f_{u}^{-}$is as desired.

For each u, we will $t r y$ to approximate the cutoff of f at 2^{u}, i.e. $\min \left(f, 2^{n}\right)$. We partition the codomain $\left[0,2^{n}\right]$ into intervals of equal length 2^{-n}, so the total of

$$
k_{n}:=2^{n} / 2^{-n}=2^{2 n}
$$

$$
B_{k}:=f^{-1}\left[2^{-n} \cdot k, \infty\right], k=1, \ldots, k_{n} .
$$

Note ha $B_{1} \geq B_{2} \geq \ldots \geq B_{k_{n}}$ and put $f_{n}:=\sum_{k=1}^{k_{n}} 2^{-n} \cdot \mathbb{1}_{B_{k}}$. Note that the standard presentation of f_{n} is $f_{n}=\sum_{k=1}^{k_{n}^{n}} 2^{-n} \cdot k \cdot \mathbb{1}_{B_{k}^{\prime}}$, where $B_{k}^{\prime}:=B_{k} \backslash B_{k+1}$ for $\mid \leqslant k<k_{n}$ and $B_{k n}^{\prime}:=B_{k n}$.

Patting $X_{n}:=f^{-1}\left[0,2^{n}\right]^{k=1}$, we see $h_{t}\left\|\left.f\right|_{X_{n}}-f_{n}\right\| \leq 2^{-4}$ and the X_{n}
increase. Thus if f is bounded on X^{\prime}, then $X^{\prime} \subseteq X_{m}$ and we have $\left\|\left.f\right|_{x^{\prime}}-\left.f_{n}\right|_{x^{\prime}}\right\| \leqslant 2^{-n}$ for all $n \geqslant m$, so $\left.\left.f_{n}\right|_{x^{\prime}} \rightarrow_{u} f\right|_{x^{\prime}}$.
In particular, for any $x \in X$ with $f(x)<\infty, f_{n}(x) \rightarrow f(x)$.
And tor $x \in X$ with $f(x)=\infty$, one verities b_{y} inspection tat $f_{n}(x)=2^{n} \rightarrow \infty$.
Now it's reasonable to define the g-integral of $\left.f \in C^{+}\right\}_{3}$

$$
\int f d f:=\sup \left\{\int s d \mu: s \in C^{t} \text { simple and } s \leq f\right\} \text {. }
$$

Note that if t itself is simple, the two definitions of $\int f d^{h}$ coincide be. cause fly will be accounted for in the sup.

Observations. let $f, g \in L^{t}$.
(a) Non-negativity: $\int f d \mu \geqslant 0$. In particular, $f \leq g \Rightarrow \int f d \mu \leq \int g d \mu$.
(b) $\int f d r=0 \Leftrightarrow f=0$ are.
(c) \int coaling: $\int a \cdot f d \mu=a \cdot \int f d \mu$ for all $a \in[0, \infty)$.

Proof. We only pave (c).
\Rightarrow Suppose $\int f d y=0$. Then if f was not 0 are., Here weald be sone $u \in \mathbb{N}^{+}$sit. $f \geqslant \frac{1}{n}$ on a positive necsure set B_{n}. So the simple paction $s=\frac{1}{n} \cdot \mathbb{1}_{B_{n}}$ is $\leq f$ and $\int s d r=\frac{1}{n} \cdot d^{\mu}\left(B_{n}\right)$ which is positive, a coutradicdion.
\Leftrightarrow. If $f=0$ a.e., then any single function $0 \leq s \leq f$ is also Da.l. so $\int s d \mu=0$.

Note the to compute $\int f d r$, we would to appcryinate f from below $v_{y} \sin p l$ Encutione $\left(f_{n}\right)$ al hope hot $\int f d \mu=l_{i} \int f_{u} d \mu$.
Also, we would like to prove linearity of J, "which amounts to Finite additivity of \int. All his follows from:

Monotone Convergence Theorem. Lit $f_{n}, f \in L^{+}$al $f_{n} \not \supset f$, i.e. $f_{0} \leq f_{1} \leq f_{2} \leq \ldots f$ and $f_{u} \rightarrow f$ promise. Then $\int f_{u} d d>\int f d r$.
Prod. Let f_{n} 价 ptuise. Then $\int f_{n} d \mu \leqslant \int f d \mu$, so $\lim _{n} \int t_{2} d \mu=$ $\inf _{n} \rho \int f_{n} \leqslant \int f d \mu$. We prove the converse $\lim _{n} \int_{n} \tilde{d}^{\mu} \mu \geqslant \int f d \mu$,
For hich we fix a simple taction $0 \leq s \leq f$ and show ht $\lim _{\lim _{A}} \int f_{n} d{ }^{\mu} \geqslant \int s d \mu$. We give ourselves an ε coom, and show that

$$
\lim _{n} \int f_{n} d \mu \geqslant(1-\varepsilon) \cdot \int s d \mu=\int(1-\varepsilon) s d \mu
$$

for all $\varepsilon>0$. Let $X_{n}:=\left\{x \in X: f_{n}(x) \geqslant(1-\varepsilon) s\right\}$. Then $X=\bigcup_{n \in \mathbb{N}} X_{n}$,
So $\int f_{n} d \mu \geqslant \int_{x} f_{n} d \mu \geqslant \int_{x}(1-\varepsilon) s d \mu$ and by upward mana to wicity of the measure $\mathcal{J}_{(1-s)_{s}}^{\mu}$,
we have hat $\sup _{u} \int_{X_{n}}(1-\varepsilon) s d \mu=\int(1-\varepsilon) s d \mu$, hence

$$
\lim _{n} \int f_{n} d \mu \geqslant \int(1-\varepsilon) s d \mu .
$$

