Math 564: Advance Analysis 1 Lecture 12

For (c), we use that
$$0.00 = 0$$
.
For (d), we only need to show cital additivity, so let $B = \bigcup_{n \in N} B_n$ in \mathcal{M} .
Fix a representation $f = \sum_{i \in M} a_i \mathbb{1}_{C_i}$. Then

$$J_{f}(B) := \int f dJ = \int f \cdot 1_{B} dJ = \sum_{i < m} a_{i} J(C_{i} \cap B) = \sum_{i < m} a_{i} \sum_{i < m} J(C_{i} \cap B_{n}) =$$

$$= \sum_{n \in IN} \sum_{i \leq m} a_{i} J(C_{i} \cap B_{n}) = \sum_{n \in IN} \int \sum_{i < m} a_{i} 1_{C_{i}} \cdot 1_{B_{n}} dJ = \sum_{n \in IN} \int_{i < m} \sum_{n \in IN} \int_{B_{n}} dJ = \sum_{n \in IN} \int_{B_{n}} \int_{B_{n}} dJ = \sum_{n \in IN} \int_{B_{n}} \int_{B_{n}} \int_{B_{n}} \int_{B_{n}} dJ = \sum_{n \in IN} \int_{B_{n}} \int_{B_{n}}$$

Recall notions at conversative. For a set X and a metric space
$$(Y, d)$$

(for example $Y = (R)$. Let $f_n: X \to Y$ and $f: X \to Y$.
• We say Wt (f_n) converges to f pointwise, and write $f_n \to f$ ptwise,
if for each $x \in X$, $f_n(x) \to f(x)$ in the top of Y.
• We say Wt (f_n) converges to f uniformly, and write $f_n \to nf$, if
 $d_n(f_n, f) \to 0$ as $n \to \infty$, there for $f_1 : X \to Y$
 $d_n(f_1, g) := \sup_{x \in X} d(f(x), g(x)),$
we call this the uniform distance between f and g_1 .
When $Y = R$, we also write $\|f_n\|_u := \sup_{x \in X} |f(x)|$, so $d_n(f_1, g) = \|f_1 - g\|_{u_1}$
und we call $\|f_n\|_u$ the uniform user.

Prop.
(a) For every FELT, there is a sequence
$$(f_n) \leq t$$
 of simple functions
such Wt for $\leq f_1 \leq f_2 \leq \ldots \leq f_1$, for $\rightarrow f$ pointwise on X , the
convergence is uniform on every set $X' \leq X$ on thick f is bounded.
(b) For every $f \in L$, there is a sequence $(f_n) \leq L$ of simple functions s.t. $|f_0| \leq |f_1| \leq \ldots \leq |f|$,
 $f_n \rightarrow f$ pointwise, and $f_n|_{X_1} \rightarrow f|_{X_1}$ for each $X' \leq X$ on thick f is bounded.

Proof (b) Collows from (a) by writing $f = f^{*} - f^{-}$, getting regneries (f_{n}^{+}) and (f_{n}) of simple functions so distrying (a) for f^{*} and f^{-} , then the sequence $f_{n} := f_{n}^{+} - f_{n}^{-}$ is as also for f. $a \int_{0}^{0} f^{-}[2^{-1}, 2^{-1}, 2] = B_{1}$ for each n, we will try to approxi-(a) ^[0,03] $f^{-1}(a^{-1}, 1, a^{-1}, a) = B_{1}$ make the intoff of f at 2", i.e. $f^{-1}(a^{-1}, a, a^{-1}, 3) = B_{2}$ min (f, 2"). We partition the cochomain $f'(a' \cdot 3, a' \cdot 4) = B_{3}$ 4 $3 - \frac{1}{2} + \frac{1}{2} +$ Patting Xn = f⁻¹[0, 2ⁿ], we see MA IIf |xn - full < 2⁻ⁿ and the Xn increase. Thus if fir bounded on X', then X' = Xm and we have $\|f\|_{X^{1}} - f_{n}\|_{Y^{1}} \leq 2^{-h} \quad \text{for all } n \geq m, s_{2} \quad f_{n}\|_{X^{1}} \rightarrow_{u} f(X^{1}).$ In particular, for any xEX with $f(x) < \infty$, $f_{-}(x) \rightarrow f(x)$. And for xEX with $f(x) = \infty$, one verifies by inspection that $f_{-}(x) = 2^{-} \rightarrow 0^{-}$. Now it's reasonable to define the I-integral of felt by Jflr := sup {]slr : set simple and s < f }. Note that if it itself is simple, the two definitions of Ifdt wincide be. Observations. let f, g G Lt. (a) Non-negchicity: $\int f df = 0$. In particular, $f \leq g = \int f df \leq \int g df$. (b) $\int f df = 0 <=> f = 0$ a.e.

(c) Section: Jart dt = a. Jt dt her all
$$c \in [0, \infty)$$
.
Proof. We arry prove (c).
 \Rightarrow Suppose If $dt=0$. Then if t was not 0 a.e., there would be
rene a C(N' st. $f \ge \frac{1}{4}$ on a positive measure we be.
So the simple transfor $s = \frac{1}{4} \cdot 1_{B_{n}}$ is $\leq f$ and $\int sdt = \frac{1}{4} \cdot M(R)$
which is positive, a contradiction.
 $Z = If f=0$ a.e., then any single transfor $0 \leq s \leq f$ is also 0 are.
so $\int sdt=0$.
Note the to compute $\int fdt$, we would to approximate f from telde
 $Vy \sin ple transford [f_{n}]t$, we would to approximate f from telde
 $Vy \sin ple transford [f_{n}]t$, we would be approximate f from telde
 $Vy \sin ple transford [f_{n}]t$, we would be the first $dt = din fir dt$.
Also, we would like to prove time and of J , which analys
is trivite additivity of J . All this fillows from:
Monobove towergence Theorem. It is first $f f dt$, so the first $f s f s dt$.
 $f = \int_{a}^{a} f f v ine.$ Then $\int f_{a} dt \leq \int f dt$, so the first $f s dt$.
 $f = \int_{a}^{a} f f dt$. We prove the converse first $dt = \int f dt$.
 $f = \int f dt$. We prove the converse first $dt = \int f dt$.
 $f = \int f dt$. We give oncethers on z coom, and chare
 dt .
 $f = dt \geq f$ dt $z = (1-z) - \int s dt = \int (1-z) s dt$.
 $f = dt \geq f$. $dt = z = [1-z] s dt$.

ve have
$$Mt \sup_{X_n} \int (1-c) s dt = \int (1-c) s dt$$
, hence

$$\lim_{x_n} \int f_n dt \geq \int (1-c) s dt.$$